How to use
Example
(Data: https://github.com/RomiconEZ/CFLG/tree/main/tests/email-Eu-core-temporal-Dept3)
from pathlib import Path
import pandas as pd
from IPython.core.display_functions import display
from sklearn import linear_model, pipeline, preprocessing
from cflg import graph_features_auc_score_tables, features_for_edges_of_static_graph
def test_graph_features_auc_score_tables() -> None:
cls_model = pipeline.make_pipeline(
preprocessing.StandardScaler(), linear_model.LogisticRegression(max_iter=10000, n_jobs=-1, random_state=42)
)
Networks = ["email-Eu-core-temporal-Dept3"]
current_path = Path(__file__).parent
networks_files_names = [str(current_path / name / f"out.{name}") for name in Networks]
datasets_info = {
"Network": Networks,
"Label": ["EU"],
"Category": ["Social"],
"Edge type": ["Multi"],
"Path": networks_files_names,
}
datasets_info = pd.DataFrame(datasets_info)
datasets_info = datasets_info.iloc[0:1]
(
latex_feature_network_table_1,
latex_feature_network_table_2,
latex_feature_network_table_3,
latex_feature_network_table_4,
latex_auc_table,
) = graph_features_auc_score_tables(datasets_info, cls_model=cls_model, verbose=True)
print(latex_feature_network_table_1)
print(latex_feature_network_table_2)
print(latex_feature_network_table_3)
print(latex_feature_network_table_4)
print(latex_auc_table)
return
def test_features_for_static_graph() -> None:
def display_dataframe(df):
with pd.option_context("display.max_columns", None): # Показать все колонки
display(df.head(5)) # Вывести первые 5 строк
current_path = Path(__file__).parent
name = "email-Eu-core-temporal-Dept3"
path_to_data = str(current_path / name / f"out.{name}")
X = features_for_edges_of_static_graph(path_to_data, verbose=True)
return